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Abstract

The main aim of the present paper is to provide a full asymptotic analysis of a family
of neural network (NN) operators based on suitable density functions within the Lp-setting,
and in the space of continuous functions. Two approaches are pursued: the first employs the
celebrated Hardy-Littlewood (HL) maximal inequality, while the second adopts a constructive,
fully moment-based, method. A crucial step in the proof of the previous results is provided
by achieving asymptotic estimates for the NN operators in the cases of functions belonging
to Sobolev spaces. By means of the previously mentioned first approach, we are able to
establish sharp estimates that can not be applied with p = 1, since in that case the HL
maximal inequality fails. This justifies resorting to the second complementary approach,
which is revealed to be very useful to cover the remaining case. The asymptotic analysis
is finally completed by deducing the corresponding qualitative order of approximation for
functions within suitable Lipschitz classes. At the end of the paper, several examples of
density functions are also presented and discussed in relation to the previous results. Finally,
we recall that NN operators based on the well-known ReLU or RePUs functions are also
included in the present theory.
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1 Introduction

It is well-known that artificial neural networks (NNs) were initially conceptualized in the early
1900s with the primary objective of creating a simplistic model mirroring the main workings
of the human brain. The foundational idea revolved around a network architecture structured
in one or more layers composed of many nodes, where each one emulates the behaviour of a
biological neuron.

The pervasive influence of neural networks extends across several domains, making them
one of the most extensively studied topics, as evidenced by recent references like [42, 43]
and several others. Their widespread applicability spans fields such as artificial intelligence,
machine learning, as well as more deterministic and rigorous disciplines, like the mathematics,
as exemplified, e.g., by [38, 21, 30, 29, 26, 39].

One of the main abilities of the neural network model is the possibility to be learned by the
implementation of training algorithms; formally this can be viewed as an approximation process.
The latter remark justified all the studies performed in the last forty years in relation to this
subject, that is, the study of NN-type approximation methods.
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Among the possible considered approaches, we can find the widely studied NN operators,
see, e.g., the following set of papers [6, 7, 8, 2, 19, 24, 4, 12, 27, 34, 3, 5, 28, 40, 11]), where some
of them are very recent.

Among the most studied versions of the NN operators, we can find that one introduced and
studied in [20], where the authors defined a so-called Kantorovich version of these NN operators,
which is revealed to be very suitable in order to reconstruct multivariate not-necessarily continuous
data (i.e., in the Lp-setting, 1 ≤ p < +∞), other than the continuous ones. The main idea behind
the definition of such operators was that their coefficients must be defined by means of integral

averages of the type
∫ k+1

n
k
n

f(u)du, where f is a locally integrable target function.

More precisely, the Kantorovich neural network (NN) operators assume the following form

(Knf)(x) =

⌊nb⌋−1∑
k=⌈na⌉

[
n

∫ (k+1)/n

k/n
f (u) du

]
ϕσ (nx− k)

⌊nb⌋−1∑
k=⌈na⌉

ϕσ(nx− k)

,

where n ∈ N, f : [a, b] → R, and x ∈ [a, b]. In the above definition, ϕσ(·) denotes a density
function generated by a suitable finite linear combination of sigmoidal activation functions, as
extensively shown in the following section, while the symbols ⌈·⌉ and ⌊·⌋ denote respectively the
ceiling and the integer part of a given number.

In the last years, several studies have been carried out for Kantorovich NN operators (see
[10, 36]), including for their nonlinear max-product variants (see, e.g., [17]).

We recall that sigmoidal functions have been considered as activation of NN-type models
since the beginning of this topic; currently, other kinds of activation functions are also taken
into account, such as the rectified linear unit (ReLU) and the rectified power units (RePUs)
functions. At the end of the paper, other than examples of sigmoidal functions for which the
theory of Kantorovich NN can be applied, we claim that also ReLU and RePUs functions can
be included in the present theory.

In the present paper, we provide a fully asymptotic analysis for the above operators Kn in
the Lp-setting and in the space of continuous functions, in order to quantify their approximation
performances in terms of a specific rate of convergence.

Such analysis will be performed thanks to the use of the well-known modulus of smoothness
ω(f, δ)p, 1 ≤ p ≤ +∞, according to the convergence results previously recalled.

To reach the above aim, the path to go through is the following: first asymptotic estimates
must be derived in a regular subspace of Lp, that is the usual Sobolev space W 1,p, then, using
a constructive density theorem of Sendov and Popov ([35]) based on the well-known Steklov
functions ([14]), we are able to extend such quantitative estimates to the whole Lp-space.

The central point in the above proof is the application of the celebrated Hardy-Littlewood
(HL) maximal inequality, which involves the so-called HL maximal function; in this way we
provide sharp estimates in the case of p-norm, with 1 < p ≤ +∞, since it is well-known that the
HL maximal inequality is not valid, in general, when p = 1.

Motivated by the fact that the above result can not be used to treat the case p = 1, we also
propose a different strategy of proof that allows us to cover this gap.

Hence, we propose an additional and complementary proof of the above quantitative analysis
based on classical techniques, i.e., on a constructive moment-type approach. Here, we provide an
asymptotic theorem in the case of functions belonging to the Sobolev space W 2,p, 1 ≤ p ≤ +∞,
and requiring a slightly stronger assumption on the sigmoidal function σ generating ϕσ. Finally,
the asymptotic theorem is extended to the whole Lp-spaces resorting again to the previously
mentioned constructive density theorem of Sendov and Popov.

Note that, the estimates achieved by the second proposed approach for the cases p > 1 are
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less sharp than those established by the first proof employing the HL maximal inequality; hence
the second proof can be considered meaningful only to face the case p = 1.

For the sake of completeness, we complete the analysis of the order of approximation by
providing also the qualitative versions of the above estimates, when functions belonging to
suitable Lipschitz classes are considered.

This study on the order of approximation in Lp-spaces, coupled with the analysis of convergence,
provides the theoretical background for many applications problems (see, e.g., [44]). In fact, it
is well-known that approximation and quantitative results involving not necessarily continuous
functions, that model the majority of real world data, turn out to be useful in several applications
across different fields, including Signal and Image Processing and Machine Learning.

2 Notations and preliminaries

Let I ⊆ R be a given compact. We denote by Lp(I), 1 ≤ p < +∞, the space of all Lebesgue
measurable functions f : I → R such that

∫
I |f(u)|

pdu < +∞, endowed with the norm

∥f∥p :=
(∫

I
|f(u)|pdu

) 1
p

.

If p = +∞, let L∞(I) be the space of all essentially bounded functions, provided with the norm
∥f∥∞ := ess supu∈R |f(u)|. Moreover, by C(I) we denote its subspace of all continuous functions
on I, where ∥·∥∞ is actually the max-norm. Furthermore, we may recall the definition of Sobolev
spaces, namely

W k,p(I) :=
{
f ∈ Lp(I) : f (n) ∈ Lp(I), 1 ≤ n ≤ k, n ∈ N

}
, (1)

1 ≤ p ≤ +∞, k ∈ N, where the derivatives f (n) are given in the distributional (or weak) sense.
Equivalently, the Sobolev spaces W k,p(I) can be also defined as the set of functions for which
the distributional (or weak) derivatives f (k−1) ∈ AC(I) and f (k) ∈ Lp(I), where AC(I) denotes
the space of absolutely continuous functions on I (see [23]). Finally, by Ck(I) we denote the
space of all k-times continuously differentiable functions on I.
In order to get quantitative estimates to study the order of approximation, it is needed to
introduce the notion of the modulus of smoothness of a given function f , that arises from the
definition of finite differences of order k ∈ N of f , namely

∆k
h(f, x) :=

k∑
j=0

(
k

j

)
(−1)k−jf(x+ jh), x ∈ I, (2)

where f : I → R. Obviously, in (2) and in where it is necessary we consider f as extended on
the whole real line as a periodic function, with period equal to the length of the compact I.
This leads to the definition of the k-th modulus of smoothness in Lebesgue spaces, given by

ωk(f, δ)p := sup
|h|≤δ

∥∆k
h(f, ·)∥p, δ > 0, (3)

where f ∈ Lp(I) if 1 ≤ p < +∞, or f ∈ C(I) if p = +∞. We remark that if k = 1, it reduces to
the classical first-order modulus of smoothness, that can be briefly denoted by ω(f, δ)p.

3 The Kantorovich NN operators

A function σ : R → R is called a sigmoidal function if limx→−∞ σ(x) = 0 and limx→+∞ σ(x) = 1.
From now on, we always consider non-decreasing sigmoidal functions σ, with σ(1) < 1,

satisfying the following assumptions:
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(S1) σ(x)− 1/2 is an odd function;

(S2) σ ∈ C2(R) and it is also concave on [0,+∞);

(S3) σ(x) = O(|x|−α−1) as x → −∞, for some α > 0,

according to the general theory developed in [18].
We recall that, in general, given f, g : R → R, we write f(x) = O(g(x)), as x → +∞ (or
x → −∞), if there exist K, c > 0 such that |f(x)| ≤ K |g(x)|, for every x > c (or x < −c,
respectevely).
The density function ϕσ generated by σ is defined as follows:

ϕσ(x) :=
1

2
[σ(x+ 1)− σ(x− 1)], x ∈ R. (4)

Definition 3.1. [[18]] Let σ be a sigmoidal function assumed as above. Let n ∈ N such that
⌈na⌉ ≤ ⌊nb⌋−1, where ⌈·⌉ and ⌊·⌋ denote the ”ceiling” and the ”integer part” of a given number
and a, b are real numbers. We define the Kantorovich NN operators, by:

(Knf)(x) =

⌊nb⌋−1∑
k=⌈na⌉

[
n

∫ (k+1)/n

k/n
f (u) du

]
ϕσ (nx− k)

⌊nb⌋−1∑
k=⌈na⌉

ϕσ(nx− k)

, x ∈ I := [a, b], (5)

where f : I → R is measurable and bounded.

From now on, by the symbol I we denote (as in Definition 3.1) the interval [a, b].
The definition of ϕσ has been first introduced in [7, 8] in the cases of the logistic and the
hyperbolic tangent functions (such examples are also discussed in Section 4.3), while it has been
extended in [18] to every sigmoidal function satisfying the previous conditions (Si), i = 1, 2, 3.

In the following lemma we can find some well-known properties of ϕσ established in [18] and
[20], that can be useful in order to study the approximation properties of the operators Kn.

Lemma 3.2. (i) ϕσ(x) ≥ 0 for every x ∈ R, with ϕσ(2) > 0, and moreover lim
x→±∞

ϕσ(x) = 0;

(ii) The function ϕσ(x) is even;

(iii) The function ϕσ(x):

is non-decreasing for x < 0 and non-increasing for x ≥ 0; (6)

(iv) Let α be the positive constant of condition (S3). Then:

ϕσ(x) = O(|x|−α−1), as x → ±∞. (7)

Hence, it turns out that ϕσ ∈ L1(R);

(v) For every x ∈ R, ∑
k∈Z

ϕσ(x− k) = 1, (8)

and

∥ϕσ∥1 =

∫
R
ϕσ(x) dx = 1; (9)

(vi) Let x ∈ I and n ∈ N+. Then:

n−1∑
k=−n

ϕσ(nx− k) ≥ ϕσ(2) > 0. (10)
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Remark 3.3. Note that, the assumed technical condition σ(1) < 1 is necessary to prove that
ϕσ(2) > 0 (see (i) of Lemma 3.2). Indeed, if we suppose by contradiction that σ(3) = σ(1), by
the Lagrange theorem we get σ′(x) = 0 for every x ∈ [1, 3] and hence σ(x) = σ(1), for every
x ∈ [1, 3]. In particular, being σ′(x) ≥ 0 and non-decreasing for x ≥ 0 (from (S2)), it turns out
that σ′(x) = 0 for every x ≥ 1 and hence σ(x) = σ(1) < 1, for every x ≥ 1. Therefore, we reach
a contradiction, in view of the fact that limx→+∞ σ(x) = 1.
Obviously, if σ is strictly increasing, the technical condition σ(1) < 1 can be omitted.

Notice that, Kn are well-defined, e.g., for f ∈ L∞(I); this is a consequence of (10) and of
the following estimate:

|(Knf)(x)| ≤ ∥f∥∞ < +∞, x ∈ I, n ∈ N. (11)

We now recall the useful notion of the discrete absolute moment of order ν ≥ 0 of ϕσ ([18]), i.e.,

Mν(ϕσ) := sup
u∈R

∑
k∈Z

ϕσ(u− k) |u− k|ν ; (12)

in particular, by (8), one can easily observe that M0(ϕσ) = 1. Under the above assumptions on
σ there holds:

Mν(ϕσ) < +∞, 0 ≤ ν < α, (13)

(see, e.g., [15, 16]). The NN Kantorovich operators are well-defined not only in L∞(I), but in
every Lebesgue space Lp(I), with 1 ≤ p < +∞. Furthermore, a norm convergence theorem in
this context has been established (see, e.g., [20]).

Theorem 3.4 ([20]). Let f ∈ Lp(I), with 1 ≤ p < +∞. Thus, the following inequality holds

(i) ∥Knf∥p ≤ ϕσ(2)
−1/p · ∥f∥p, i.e., Kantorovich NN operators turn out to be linear and

bounded from Lp(I) into itself.

Moreover, a convergence theorem with respect to the Lp-norm holds, that is

(ii) lim
n→+∞

∥Knf − f∥p = 0.

Finally, we highlight that also a uniform convergence theorem for Kantorovich NN operators
has been provided in the space C(I) (see [20]).

4 Asymptotic analysis in Lp-spaces

Here, we study the asymptotic behaviour of the Kantorovich NN operators when functions
belonging to Sobolev spaces are considered. This leads to establish suitable quantitative estimates
in terms of the aforementioned modulus of smoothness; this represents the main goal of the
present paper. Such result is useful to give a measure of the approximation error of the
Kantorovich NN operators with respect to the Lp-convergence. To achieve this, we present
two complementary approaches, that will be presented below in details.

4.1 A first approach employing the Hardy-Littlewood maximal function

Firstly, we have to recall an important tool of Functional Analysis, that plays a crucial role in
the following. It is the well-known Hardy–Littlewood maximal function (HL maximal function,
[1]), that is defined (in its uncentered version) as

Mf(x) := sup
u∈[a,b]

u̸=x

1

|x− u|

∫ u

x
|f(t)| dt, x ∈ [a, b],
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for a locally integrable function f : [a, b] → R. The celebrated theorem of Hardy, Littlewood
and Wiener asserts that Mf is bounded on Lp(R) for 1 < p ≤ +∞ for every f ∈ Lp(R), namely

∥Mf∥p ≤ Cp∥f∥p, (14)

where the constant Cp depends only on p (Theorem I.1 of [37]). Furthermore, it is well-known
that the corresponding result for p = 1 fails.
In this section, we will consider two classes of sigmoidal functions satisfying the decay condition
(S3) for the following values of α > 0 and 1 < p ≤ +∞. In particular, if 1 < p < +∞, we define

D(α, p) := {σ | σ is a sigmoidal function satisfying (S3) for α > p} ,

while if p = +∞, we introduce

D(α,+∞) := {σ | σ is a sigmoidal function satisfying (S3) for α > 1} .

Now, we are able to present a first asymptotic estimate for the Kantorovich NN operators.

Theorem 4.1. Let 1 < p ≤ +∞ and σ ∈ D(α, p). Thus, for every function f ∈ W 1,p(I), there
holds

∥Knf − f∥p ≤ µp ·
∥f ′∥p
n

< +∞,

for n ∈ N, with

µp := C
1
p
p

(
2p−1

ϕσ(2)

) 1
p
[

1

p+ 1
+Mp(ϕσ)

] 1
p

,

if 1 < p < +∞, and

µ∞ := C∞
1 + 2M1(ϕσ)

2ϕσ(2)
,

where the constants Cp are those arising from (14).

Proof. Let f ∈ W 1,p(I), with p > 1, x ∈ I and n ∈ N be fixed. Firstly, we suppose 1 < p < +∞.
We now expand the function f according to the first-order Taylor formula in Sobolev spaces
with integral remainder (see, e.g., equation (5.6) of [23], p. 37), that is

f(u) = f(x) +

∫ u

x
f ′(t)dt, x, u ∈ I. (15)

Thus, by (5) and (15), we obtain

(Knf) (x) =

⌊nb⌋−1∑
k=⌈na⌉

{
n

∫ (k+1)/n

k/n

[
f(x) +

∫ u

x
f ′(t)dt

]
du

}
ϕσ (nx− k)

⌊nb⌋−1∑
k=⌈na⌉

ϕσ(nx− k)

= f(x) +

⌊nb⌋−1∑
k=⌈na⌉

{
n

∫ (k+1)/n

k/n

[∫ u

x
f ′(t)dt

]
du

}
ϕσ (nx− k)

⌊nb⌋−1∑
k=⌈na⌉

ϕσ(nx− k)

=: f(x) +R1,n.
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Therefore, the problem reduces to estimate the Lp-norm of the remainder R1,n. To this aim,
we use Jensen inequality twice, property (vi) of Lemma 3.2 and the boundedness of the Hardy-
Littlewood maximal function (14) as follows

∥R1,n∥pp =
∫ b

a

∣∣∣∣∣∣∣∣∣∣∣∣

⌊nb⌋−1∑
k=⌈na⌉

{
n

∫ (k+1)/n

k/n

[∫ u

x
f ′(t)dt

]
du

}
ϕσ (nx− k)

⌊nb⌋−1∑
k=⌈na⌉

ϕσ(nx− k)

∣∣∣∣∣∣∣∣∣∣∣∣

p

dx

≤
∫ b

a

⌊nb⌋−1∑
k=⌈na⌉

∣∣∣∣∣n
∫ (k+1)/n

k/n

[∫ u

x

∣∣f ′(t)
∣∣ dt] du

∣∣∣∣∣
p

ϕσ (nx− k)

⌊nb⌋−1∑
k=⌈na⌉

ϕσ(nx− k)

dx

≤ 1

ϕσ(2)

∫ b

a

⌊nb⌋−1∑
k=⌈na⌉

∣∣∣∣∣n
∫ (k+1)/n

k/n

[∫ u

x

∣∣f ′(t)
∣∣ dt] du

∣∣∣∣∣
p

ϕσ (nx− k) dx

≤ 1

ϕσ(2)

∫ b

a

⌊nb⌋−1∑
k=⌈na⌉

{
n

∫ (k+1)/n

k/n

∣∣∣∣∫ u

x

∣∣f ′(t)
∣∣ dt∣∣∣∣p du

}
ϕσ (nx− k) dx

≤ 1

ϕσ(2)

∫ b

a

⌊nb⌋−1∑
k=⌈na⌉

{
n

∫ (k+1)/n

k/n
|u− x|p

∣∣Mf ′(x)
∣∣p du

}
ϕσ (nx− k) dx.

=
1

ϕσ(2)

∫ b

a

∣∣Mf ′(x)
∣∣p ⌊nb⌋−1∑

k=⌈na⌉

{
n

∫ (k+1)/n

k/n
|u− x|p du

}
ϕσ (nx− k) dx.

Now, we note that for any γ ≥ 1, using the convexity of | · |γ , the following general estimate
holds

n

∫ k+1
n

k
n

|u− x|γdu ≤ n

∫ k+1
n

k
n

∣∣∣∣22
(
u− k

n

)
+

2

2

(
k

n
− x

)∣∣∣∣γ du
≤ 2γ−1n

[∫ k+1
n

k
n

(
u− k

n

)γ

du+

∣∣∣∣kn − x

∣∣∣∣γ 1

n

]

= 2γ−1

[
1

γ + 1

(
1

n

)γ

+ |k − nx|γ 1

nγ

]
(16)

=
2γ−1

nγ

[
1

γ + 1
+ |k − nx|γ

]
.

Hence, using (16) with γ = p, we obtain

∥R1,n∥pp ≤
2p−1

ϕσ(2)

∫ b

a

|Mf ′(x)|p

np

[
M0(ϕσ)

p+ 1
+Mp(ϕσ)

]
dx

=
2p−1

ϕσ(2)

[
1

p+ 1
+Mp(ϕσ)

]
∥Mf ′∥pp

np

≤ 2p−1

ϕσ(2)

[
1

p+ 1
+Mp(ϕσ)

]
Cp∥f ′∥pp

np
< +∞,
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where Cp is the constant arising from (14) and the moment Mp(ϕσ) is finite being σ ∈ D(α, p)
and using (13).
The case p = +∞ is analogous. In particular, by using (5), (15), property (vi) of Lemma 3.2,
(16) with γ = 1, and (14), we get

|R1,n(x)| ≤

⌊nb⌋−1∑
k=⌈na⌉

{
n

∫ (k+1)/n

k/n

∣∣∣∣∫ u

x

∣∣f ′(t)
∣∣ dt∣∣∣∣ du

}
ϕσ (nx− k)

⌊nb⌋−1∑
k=⌈na⌉

ϕσ(nx− k)

≤ 1

ϕσ(2)

⌊nb⌋−1∑
k=⌈na⌉

{
n

∫ (k+1)/n

k/n
|u− x|

∣∣Mf ′(x)
∣∣ du}ϕσ (nx− k)

≤ ∥Mf ′∥∞
ϕσ(2)

⌊nb⌋−1∑
k=⌈na⌉

{
n

∫ (k+1)/n

k/n
|u− x| du

}
ϕσ (nx− k)

≤ ∥Mf ′∥∞
nϕσ(2)

[
1

2
+M1(ϕσ)

]
≤ C∞

nϕσ(2)

[
1

2
+M1(ϕσ)

]
∥f ′∥∞ < +∞,

where C∞ is the constant arising from (14) and M1(ϕσ) < +∞ being σ ∈ D(α,∞) and using
again (13). This completes the proof.

Now, in order to establish the theorem concerning quantitative estimates based in terms of
the modulus of smoothness, we use the following useful result, that can be found, e.g., in the
following book of B. Sendov and V.A. Popov of 1988.

Theorem 4.2 ([35]). Let f be a function belonging to Lp(I), 1 ≤ p < +∞ (or f ∈ C(I) with
the norm ∥ · ∥∞). For every integer k > 0 and every h such that 0 < h ≤ (b− a)/k, there exists
a function fk,h ∈ Lp(R) if 1 ≤ p < +∞ (or fh,k ∈ C(I)) satisfying

(i) ∥f − fk,h∥p ≤ c1(k)ωk(f, h)p (with p = +∞ when f ∈ C(I));

(ii) fh,k ∈ W k,p(I) if 1 ≤ p < +∞ (or fh,k ∈ Ck(I)) and∥∥∥f (s)
k,h

∥∥∥
p
≤ c2(k)h

−sωs(f, h)p, s = 1, . . . , k,

(with p = +∞ when f ∈ C(I)) where c1(k) and c2(k) are suitable constants depending only on
k.

Remark 4.3. The proof of Theorem 4.2 is constructive and functions fk,h can be taken as the
well-known Steklov functions. For further details, please see pp. 31-34 of [35] or [14].

Now, we are ready to state one of the main theorem of the present section, for the case
p > 1, providing the desired quantitative estimates in terms of the modulus of smoothness for
the Kantorovich NN operators.

Theorem 4.4. Let 1 < p < +∞ and σ ∈ D(α, p). Thus, for every function f ∈ Lp(I), there
holds

∥Knf − f∥p ≤ λp · ω
(
f,

1

n

)
p

,

while if f ∈ C(I) and σ ∈ D(α,+∞), we have

∥Knf − f∥∞ ≤ λ∞ · ω
(
f,

1

n

)
∞
,
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for a sufficiently large n ∈ N, where λp > 0, 1 < p ≤ +∞, are suitable constants.

Proof. Let f ∈ Lp(I), with 1 < p < +∞, or f ∈ C(I), be fixed. By Theorem 4.2 (i), for every
0 < h ≤ b− a, there exists f1,h ∈ W 1,p(I) (or f1,h ∈ C1(I)) such that

∥f − f1,h∥p ≤ c1(1)ω(f, h)p, (17)

(with p = +∞ here and also in the estimates below, when f ∈ C(I)).
Moreover, since f − f1,h ∈ Lp(I) (or f − f1,h ∈ C(I)) we deduce from (i) of Theorem 3.4 and
(11) that

∥Kn(f − f1,h)∥p ≤ Ap∥f − f1,h∥p, (18)

where
Ap := ϕ(2)

− 1
p , if 1 < p < +∞, and A∞ := 1, if p = +∞. (19)

Then, by the linearity of the operators Kn and in view of (17) and (18), we have

∥Knf − f∥p ≤ ∥Knf −Knf1,h∥p + ∥Knf1,h − f1,h∥p + ∥f1,h − f∥p
= ∥Kn(f − f1,h)∥p + ∥Knf1,h − f1,h∥p + ∥f1,h − f∥p
≤ Ap∥f1,h − f∥p + ∥Knf1,h − f1,h∥p + ∥f1,h − f∥p
= (Ap + 1) ∥f1,h − f∥p + ∥Knf1,h − f1,h∥p
≤ c1(1) (Ap + 1)ω(f, h)p + ∥Knf1,h − f1,h∥p.

Now, by using Theorem 4.1 applied to f1,h ∈ W 1,p(I) (or f1,h ∈ C1(I)) and also Theorem 4.2
(ii), we can write

∥Knf1,h − f1,h∥p ≤
µp

n
· ∥f ′

1,h∥p ≤
µp

n
· c2(1)h−1ω(f, h)p,

where µp is the constant arising from Theorem 4.1.
In summary, the following estimate holds

∥Knf − f∥p ≤ c1(1) (Ap + 1)ω(f, h)p +
µp

n
· c2(1)h−1ω(f, h)p,

with 1 < p ≤ +∞. Now, considering h = 1
n ≤ b− a, with n ∈ N, we finally get

∥Knf − f∥p ≤ [c1(1) (Ap + 1) + c2(1)µp] · ω
(
f,

1

n

)
p

=: λp · ω
(
f,

1

n

)
p

,

for every sufficiently large n ∈ N. This completes the proof.

For an exhaustive study of the order of approximation, we also provide a qualitative result
thanks to Theorem 4.4.
For this purpose, we have to recall the definition of Lipschitz classes in terms of the first-order
modulus of smoothness, which are defined as

Lip(ν, p) =
{
f ∈ Lp(I) : ω(f, h)p = O(hν), as h → 0+

}
, (20)

with 0 < ν ≤ 1, 1 ≤ p < +∞, while

Lip(ν,+∞) =
{
f ∈ C(I) : ω(f, h)∞ = O(hν), as h → 0+

}
, (21)

see, e.g., [23]).
Therefore, we can directly deduce a qualitative estimate for the order of approximation when
p > 1, as a consequence of Theorem 4.4.

Corollary 4.5. Let 1 < p ≤ +∞ and σ ∈ D(α, p). Thus, for every function f ∈ Lip(ν, p), with
0 < ν ≤ 1, there holds

∥Knf − f∥p ≤ Cλpn
−ν ,

for every sufficiently large n ∈ N, where the positive constants λp and C arise from Theorem 4.4
and definition (20), respectively.
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4.2 A complementary approach

Now, we want to establish a quantitative estimate also for the case p = 1, since we already know
from Theorem 3.4 (ii) that the convergence also holds in this case. Therefore, to remove the
restriction p > 1 from Theorem 4.1, we need to avoid the use in the proof of the HL maximal
function, and we must adopt a strategy in which we have to expand the involved function by
the Taylor formula with integral remainder up to the second order. Moreover, we also have
to assume a slightly stronger version of condition (S3) with respect to the previous cases (see
Theorem 4.1 and Theorem 4.4). In fact, in this section we will consider classes of sigmoidal
functions having a suitable order of decay according to condition (S3) for α > 0, as follows:

D̃(α, p) := {σ | σ is a sigmoidal function satisfying (S3) for α > 2p− 1} ,

when 1 ≤ p < +∞, and

D̃(α,+∞) := {σ | σ is a sigmoidal function satisfying (S3) for α > 2} ,

when p = +∞.

We can prove the following.

Theorem 4.6. Let 1 ≤ p < +∞ and σ ∈ D̃(α, p). Thus, for every function f ∈ W 2,p(I), there
holds

∥Knf − f∥p ≤ µ1,p ·
∥f ′∥p
n

+ µ2,p ·
∥f ′′∥p
n

2p−1
p

< +∞,

for n ∈ N, where

µ1,p :=

(
4p−1

ϕ(2)

) 1
p
[

1

p+ 1
+Mp(ϕσ)

] 1
p

,

and

µ2,p := (b− a)
1
p

(
8p−1

ϕ(2)

) 1
p
[
1

2p
+M2p−1

] 1
p

.

Furthermore, if σ ∈ D̃(α,+∞), for every function f ∈ W 2,∞(I), there holds

∥Knf − f∥∞ ≤ µ1,∞ · ∥f
′∥∞
n

+ µ2,∞ · ∥f
′′∥∞
n2

< +∞,

for n ∈ N, where

µ1,∞ :=
2M1(ϕσ) + 1

2ϕσ(2)
,

and

µ2,∞ :=
1 + 3M2(ϕσ)

3ϕσ(2)
.

Proof. Let f ∈ W 2,p(I), with 1 ≤ p < +∞, x ∈ I and n ∈ N be fixed. First, we expand
the function f according to the second-order Taylor formula in Sobolev spaces with integral
remainder (see again [23]), that is

f(u) = f(x) + f ′(x)(u− x) +

∫ u

x
f ′′(t)(u− t)dt, x, u ∈ I. (22)

Thus, by (5) and (22), we obtain

(Knf) (x) =

⌊nb⌋−1∑
k=⌈na⌉

{
n

∫ (k+1)/n

k/n

[
f(x) + f ′(x)(u− x) +

∫ u

x
f ′′(t)(u− t)dt

]
du

}
ϕσ (nx− k)

⌊nb⌋−1∑
k=⌈na⌉

ϕσ(nx− k)

10



= f(x) + f ′(x)

⌊nb⌋−1∑
k=⌈na⌉

{
n

∫ (k+1)/n

k/n
(u− x) du

}
ϕσ (nx− k)

⌊nb⌋−1∑
k=⌈na⌉

ϕσ(nx− k)

+

⌊nb⌋−1∑
k=⌈na⌉

{
n

∫ (k+1)/n

k/n

[∫ u

x
f ′′(t)(u− t)dt

]
du

}
ϕσ (nx− k)

⌊nb⌋−1∑
k=⌈na⌉

ϕσ(nx− k)

.

Now, exploiting the convexity of the function | · |p when p ≥ 1, we have

∥Knf − f∥pp ≤ 2p−1

∫ b

a

∣∣f ′(x)
∣∣p
∣∣∣∣∣∣∣∣∣∣∣∣

⌊nb⌋−1∑
k=⌈na⌉

{
n

∫ (k+1)/n

k/n
(u− x) du

}
ϕσ (nx− k)

⌊nb⌋−1∑
k=⌈na⌉

ϕσ(nx− k)

∣∣∣∣∣∣∣∣∣∣∣∣

p

dx

+ 2p−1

∫ b

a

∣∣∣∣∣∣∣∣∣∣∣∣

⌊nb⌋−1∑
k=⌈na⌉

{
n

∫ (k+1)/n

k/n

[∫ u

x
f ′′(t)(u− t)dt

]
du

}
ϕσ (nx− k)

⌊nb⌋−1∑
k=⌈na⌉

ϕσ(nx− k)

∣∣∣∣∣∣∣∣∣∣∣∣

p

dx

=: 2p−1 (I1,n + I2,n) .

We now focus on I1,n. By using Jensen inequality twice, property (vi) of Lemma 3.2, the
convexity of | · |p and (16) with γ = p, we get

I1,n =

∫ b

a

∣∣f ′(x)
∣∣p
∣∣∣∣∣∣∣∣∣∣∣∣

⌊nb⌋−1∑
k=⌈na⌉

{
n

∫ (k+1)/n

k/n
(u− x) du

}
ϕσ (nx− k)

⌊nb⌋−1∑
k=⌈na⌉

ϕσ(nx− k)

∣∣∣∣∣∣∣∣∣∣∣∣

p

dx

≤
∫ b

a

∣∣f ′(x)
∣∣p

⌊nb⌋−1∑
k=⌈na⌉

∣∣∣∣∣n
∫ (k+1)/n

k/n
|u− x| du

∣∣∣∣∣
p

ϕσ (nx− k)

⌊nb⌋−1∑
k=⌈na⌉

ϕσ(nx− k)

dx

≤
∫ b

a

∣∣f ′(x)
∣∣p

⌊nb⌋−1∑
k=⌈na⌉

{
n

∫ (k+1)/n

k/n
|u− x|p du

}
ϕσ (nx− k)

⌊nb⌋−1∑
k=⌈na⌉

ϕσ(nx− k)

dx

≤ 2p−1

ϕ(2)

∫ b

a

|f ′(x)|p

np

[
1

p+ 1
+Mp(ϕσ)

]
dx

≤ 2p−1

ϕ(2)

[
1

p+ 1
+Mp(ϕσ)

]
∥f ′∥pp
np

< +∞,
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where Mp(ϕσ) < +∞ being σ ∈ D̃(α, p) and taking into account (13). Moreover, ∥f ′∥p < +∞
since f ∈ W 2,p(I).
Now, we estimate I2,n. Here, we use Jensen inequality three times (the first two times as in the
estimate of I1,n) together with property (vi) of Lemma 3.2 and the convexity of | · |p. We have

I2,n ≤
∫ b

a

⌊nb⌋−1∑
k=⌈na⌉

∣∣∣∣∣n
∫ (k+1)/n

k/n

[∫ u

x
f ′′(t)(u− t)dt

]
du

∣∣∣∣∣
p

ϕσ (nx− k)

⌊nb⌋−1∑
k=⌈na⌉

ϕσ(nx− k)

dx

≤ 1

ϕ(2)

∫ b

a

⌊nb⌋−1∑
k=⌈na⌉

∣∣∣∣∣n
∫ (k+1)/n

k/n
|u− x|

[∫ u

x

∣∣f ′′(t)
∣∣ dt] du

∣∣∣∣∣
p

ϕσ (nx− k) dx

≤ 1

ϕ(2)

∫ b

a

⌊nb⌋−1∑
k=⌈na⌉

{
n

∫ (k+1)/n

k/n
|u− x|p

∣∣∣∣∫ u

x

∣∣f ′′(t)
∣∣ dt∣∣∣∣p du

}
ϕσ (nx− k) dx

=
1

ϕ(2)

∫ b

a

⌊nb⌋−1∑
k=⌈na⌉

{
n

∫ (k+1)/n

k/n
|u− x|2p

∣∣∣∣ 1

|u− x|

∫ u

x

∣∣f ′′(t)
∣∣ dt∣∣∣∣p du

}
ϕσ (nx− k) dx

≤ 1

ϕ(2)

∫ b

a

⌊nb⌋−1∑
k=⌈na⌉

{
n

∫ (k+1)/n

k/n
|u− x|2p−1

[∫ u

x

∣∣f ′′(t)
∣∣p dt] du

}
ϕσ (nx− k) dx

≤ ∥f ′′∥pp
ϕ(2)

∫ b

a

⌊nb⌋−1∑
k=⌈na⌉

{
n

∫ (k+1)/n

k/n
|u− x|2p−1 du

}
ϕσ (nx− k) dx.

Now, considering the estimate given in (16) with γ = 2p− 1, we obtain

I2,n ≤ 22p−2

ϕ(2)

∥f ′′∥pp
n2p−1

[
1

2p
+M2p−1(ϕσ)

]
(b− a) < +∞,

where M2p−1(ϕσ) < +∞ since condition (S3) holds for α > 2p − 1, being σ ∈ D̃(α, p).
Rearranging all the above estimates, we finally obtain the desired inequality for 1 ≤ p < +∞.
Now, we want to study the case p = +∞. Proceeding as above, we obtain

| (Knf) (x)− f(x)| ≤
∣∣f ′(x)

∣∣
∣∣∣∣∣∣∣∣∣∣∣∣

⌊nb⌋−1∑
k=⌈na⌉

{
n

∫ (k+1)/n

k/n
(u− x) du

}
ϕσ (nx− k)

⌊nb⌋−1∑
k=⌈na⌉

ϕσ(nx− k)

∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣

⌊nb⌋−1∑
k=⌈na⌉

{
n

∫ (k+1)/n

k/n

[∫ u

x
f ′′(t)(u− t)dt

]
du

}
ϕσ (nx− k)

⌊nb⌋−1∑
k=⌈na⌉

ϕσ(nx− k)

∣∣∣∣∣∣∣∣∣∣∣∣
=: J1,n + J2,n.
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By using property (vi) of Lemma 3.2 and (16) with γ = 1, we immediately get

J1,n ≤ |f ′(x)|
ϕσ(2)

⌊nb⌋−1∑
k=⌈na⌉

{
n

∫ (k+1)/n

k/n
|u− x| du

}
ϕσ (nx− k)

≤ ∥f ′∥∞
2ϕ(2)

2M1(ϕσ) + 1

n
< +∞,

being σ ∈ D̃(α,+∞). Moreover, applying Jensen inequality three times, property (vi) of Lemma
3.2 and (16) with γ = 2, we obtain

J2,n ≤ 1

ϕ(2)

⌊nb⌋−1∑
k=⌈na⌉

{
n

∫ (k+1)/n

k/n
|u− x|

[∫ u

x

∣∣f ′′(t)
∣∣ dt] du

}
ϕσ (nx− k)

≤ ∥f ′′∥∞
ϕ(2)

⌊nb⌋−1∑
k=⌈na⌉

{
n

∫ (k+1)/n

k/n
|u− x|2du

}
ϕσ (nx− k)

≤ 2∥f ′′∥∞
3ϕ(2)

1 + 3M2(ϕσ)

n2
< +∞,

being σ ∈ D̃(α, p). Now, the proof easily follows passing to the supremum with respect to
x ∈ I.

Herein, we give the main theorem including also the case p = 1.

Theorem 4.7. Let 1 ≤ p < +∞ and σ ∈ D̃(α, p). Thus, for every function f ∈ Lp(I), there
holds

∥Knf − f∥p ≤ λ1,p · ω
(
f,

1

n
1− 1

2p

)
p

+ λ2,p · ω2

(
f,

1

n
1− 1

2p

)
p

,

for every sufficiently large n ∈ N, where λ1,p and λ2,p are two suitable positive constants.

Moreover, if f ∈ C(I) and σ ∈ D̃(α,+∞), there holds

∥Knf − f∥∞ ≤ λ1,∞ · ω
(
f,

1

n

)
∞

+ λ2,∞ · ω2

(
f,

1

n

)
∞
,

for every sufficiently large n ∈ N, where λ1,∞ and λ2,∞ are other suitable positive constants.

Proof. Let f ∈ Lp(I) be fixed, with 1 ≤ p < +∞. Arguing as in the first part of the proof of
Theorem 4.4, for every 0 < h ≤ b−a

2 , there exists f2,h ∈ W 2,p(I) such that

∥Knf − f∥p ≤ (Ap + 1) ∥f2,h − f∥p + ∥Knf2,h − f2,h∥p
≤ c1(2) (Ap + 1)ω(f, h)p + ∥Knf2,h − f2,h∥p,

where constants Ap are defined in (19). We first consider the case of 1 ≤ p < +∞. Here, by
using Theorem 4.6 applied to f2,h ∈ W 2,p(I) and then Theorem 4.2 (ii) with k = 1, 2, we can
write

∥Knf2,h − f2,h∥p ≤ µ1,p

∥f ′
2,h∥p
n

+ µ2,p

∥f ′′
2,h∥p

n
2p−1

p

≤ µ1,p
c2(1)h

−1

n
· ω(f, h)p + µ2,p

c2(2)h
−2

n
2p−1

p

· ω2(f, h)p,

where constants µ1,p and µ2,p arise from Theorem 4.6.
In summary, we have

∥Knf − f∥p ≤
(
c1(2) (Ap + 1) + µ1,p

c2(1)h
−1

n

)
· ω(f, h)p + µ2,p

c2(2)h
−2

n
2p−1

p

· ω2(f, h)p.
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Now, setting h = n
−1+ 1

2p ≤ b−a
2 , with n ∈ N, we finally get

∥Knf − f∥p ≤ (c1(2) (Ap + 1) + c2(1)µ1,p) · ω
(
f,

1

n
1− 1

2p

)
p

+ c2(2)µ2,p · ω2

(
f,

1

n
1− 1

2p

)
p

=: λ1,p · ω
(
f,

1

n
1− 1

2p

)
p

+ λ2,p · ω2

(
f,

1

n
1− 1

2p

)
p

,

for every sufficiently large n ∈ N.
The case f ∈ C(I) is analogous. Here, by Theorem 4.2 (i) and (ii) and Theorem 4.6, we similarly
obtain

∥Knf − f∥∞ ≤
(
2c1(2) + µ1,∞

c2(1)h
−1

n

)
· ω(f, h)∞ + µ2,∞

c2(2)h
−2

n2
· ω2(f, h)∞.

where constants µ1,∞ and µ2,∞ arise again from Theorem 4.6. In this case, we put h = n−1 ≤
b−a
2 , with n ∈ N in order to get

∥Knf − f∥∞ ≤ (2c1(2) + µ1,∞c2(1)) · ω
(
f,

1

n

)
∞

+ c2(2)µ2,∞ · ω2

(
f,

1

n

)
∞

=: λ1,∞ · ω
(
f,

1

n

)
∞

+ λ2,∞ · ω2

(
f,

1

n

)
∞
,

for every sufficiently large n ∈ N. This completes the proof.

Now, we want to deduce a qualitative version of the above estimates as made in Subsection
4.1. To this aim, accordingly to what we have done at the end of the previous subsection, if
p = 1 we recall that

Lip(1, 1) = BV (I),

where BV (I) denotes the space of bounded variation functions on I. In the following, we also
use the well-known inequality

ωr(f, δ)p ≤ 2r−kωk(f, δ)p, δ > 0, (23)

where k, r are positive integers such that 1 ≤ k < r and 1 ≤ p ≤ +∞ (see, e.g., [23]).

Corollary 4.8. Let 1 ≤ p ≤ +∞ and σ ∈ D̃(α, p). Thus, for every f ∈ Lip(ν, p), with 0 < ν ≤ 1
and 1 ≤ p < +∞, there holds

∥Knf − f∥p ≤ Λp · n
ν
(

1
2p

−1
)
,

for every sufficiently large n ∈ N, where the positive constant Λp := C (λ1,p + 2λ2,p) arises from
Theorem 4.7, (20) and (23). Moreover, if f ∈ Lip(ν,+∞), with 0 < ν ≤ 1, there holds

∥Knf − f∥∞ ≤ Λ∞ · n−ν ,

for every sufficiently large n ∈ N, where the positive constant Λ∞ := C (λ1,∞ + 2λ2,∞) arises
from Theorem 4.7, (20) and (23).

Remark 4.9. Note that, by Corollary 4.8, we achieve estimates also for the cases 1 < p ≤ +∞,
but they turn out to be worse than those established in Corollary 4.5. Hence, the main usefulness
of Corollary 4.8 resides in the estimates that we achieve for the case p = 1, that was not covered
by Corollary 4.5.

Based on the latter remark, when we deal with Lp-estimations with p > 1, we will always
refer to Corollary 4.5 only.
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5 Some examples

We point out that in literature there are several kinds of examples of sigmoidal functions
satisfying the assumptions here required. Among these, we may recall the well-known logistic
function defined by

σl(x) := (1 + e−x)−1, x ∈ R,

and the hyperbolic tangent function, given by

σh(x) := (tanhx+ 1)/2, x ∈ R.

Both of them easily satisfy condition (S3) for every α > 0, in view of their exponential decay to
zero, as x → −∞, together with (S1) and (S2).

Remark 5.1. In the presented results, we consider sigmoidal functions satisfying conditions
(Si), for i = 1, 2, 3. Notably, the developed theory remains applicable even when assumption
(S2) concerning σ is omitted and replaced by assuming that ϕσ satisfies condition (6) along with
ϕσ(2) > 0. This means that the presented theory is versatile and can be applied to a broad
range of sigmoidal functions, including those that may not necessarily belong to C2(R).

An example of non-smooth sigmoidal function is given by the ramp function σr, defined as

σr(x) :=


0, x < −3/2

x/3 + 1/2, −3/2 < x < 3/2

1, x > 3/2.

Obviously, condition (S3) is again satisfied for every α > 0 and the corresponding ϕσr is a
compactly supported function. For a graphical representation of the above examples, the reader
can see Fig. 1.

Figure 1: Plots of σl (blue dashed-dotted line), σh (green dashed line) and σr (violet solid line)
on the left and the corresponding density functions on the right.

Other non-smooth sigmoidal functions can be generated by the well-known central B-splines
of order β ∈ N, given by

βn(x) :=
1

(n− 1)!

n∑
j=0

(−1)j
(
n

j

)(n
2
+ x− j

)n−1

+
, x ∈ R, (24)
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where (·)+ denotes the positive part, i.e., (x)+ := max {x, 0} (see, e.g., [13]). The latter lead to
define

σβi
(x) :=

∫ x

−∞
βs(t)dt, x ∈ R,

whose support turns out to be contained in [k,+∞), where k > 0 is a suitable constant (see,
e.g, Fig. 2). Therefore, condition (S3) is trivially satisfied for every α > 0.

Figure 2: Plots of σβ1 (violet dashed line), σβ2 (blue dashed-dotted line) and σβ3 (green solid
line) on the left and the corresponding density functions on the right.

Now we recall a further sigmoidal function depending on a parameter γ > 0, defined by

σγ(x) :=


2−γ

4 |x|−γ , x ≤ −1
2

1
2x+ 1

2 , −1
2 < x ≤ 1

2

1− 2−γ

4 |x|−γ , x > 1
2 ,

and the corresponding density function

ϕσγ (x) :=
1

2
[σγ(x+ 1)− σγ(x− 1)], x ∈ R,

(see, e.g., [9]). If we denote the family of NN Kantorovich operators based on ϕσγ by K
ϕγ
n , we

now explain under which conditions the main results presented here hold.
We start with the case L1(I), for which the theory developed holds requiring γ > 2. In fact, this
implies that σγ ∈ D̃(α, 1) and we can apply Theorem 4.7. To extend this to the entire Lp-setting
when 1 < p < +∞ or to C(I), it is necessary to require γ > p+1 or γ > 2, respectively (see Fig.
3). In fact, under this assumption, one can see that σγ ∈ D(α, p) for every 1 < p ≤ +∞ and
so it is possible to employ Theorem 4.4. Otherwise, if we use Theorem 4.7, the order of decay
should be higher, i.e., γ > 2p, in the Lp-case with 1 < p < +∞. In this sense, we may observe
that Theorem 4.4 allows us to require slightly weaker assumptions on the involved sigmoidal
activation functions and this makes the HL-based approach more convenient.
From the above considerations, we can deduce by Theorem 4.4, Theorem 4.7, Corollary 4.5 and
Corollary 4.8, the following comprehensive result.

Corollary 5.2. Let f ∈ L1(I) and γ > 2, it turns out that

∥Kϕγ
n f − f∥1 ≤ λ1,1ω

(
f,

1√
n

)
+ λ2,1ω2

(
f,

1√
n

)
,
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for every sufficiently large value of n ∈ N, where λ1,1 and λ2,1 are suitable positive constants. In
particular, if f ∈ Lip(1, 1) = BV (I) there holds

∥Kϕγ
n f − f∥1 = O

(
1√
n

)
,

as n → +∞. Furthermore, if f ∈ Lp(I) with 1 < p < +∞ and γ > p+ 1, or if f ∈ C(I) (with
p = +∞ below) and γ > 2, it turns out that

∥Kϕγ
n f − f∥p ≤ λp ω

(
f,

1

n

)
p

,

for every sufficiently large value of n ∈ N, where λp is a suitable positive constant. In particular,
if f ∈ Lip(1, p) with 1 < p ≤ +∞, there holds

∥Kϕγ
n f − f∥p = O

(
1

n

)
,

as n → +∞.

Figure 3: Plots of σγ for γ = 4 (blue dashed-dotted line), γ = 8 (green solid line) and γ = 16
(violet dashed line) on the left and the corresponding density functions ϕγ on the right.

Remark 5.3. It is important to remark that the presented theory can be also applied to the well-
known ReLU activation function (Rectified Linear Unit) (see [22, 33, 41, 31]), that represents
a very attractive tool within the NN approximation theory. We may mention also their k-th
power, denoted by ReLUk. The latter are also known with the name of Rectified Power Units
(RePUs) (see [32, 25]). For further details, see also [13].

6 Final remarks and conclusions

The neural network operators studied in the present paper have been introduced in order to
establish constructive approximation results by a family of neural networks. The present theory
deals with the approximation of functions of one-variable and belongs to very active fields of
research. It is well-known that the theory of artificial neural networks is mainly a multivariate
theory; indeed the corresponding multivariate version of the operators Fn have been introduced
and studied in [20]. Following the approach introduced in the present paper, we can extend the
results here established also for the multivariate version of the neural network operators given
in [20].
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